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•Research, policies, and practices often target specific groups

•Complex probability sampling complicates subpopulation 
analyses
• Design-based variance estimators define variation across all possible 
samples under the original sampling design

• Subsetting the data ignores the randomness of the subpopulation sample size
• Problematic when using linearization methods and number of first stage sampling units is altered

• Multiple-group and zero-weight approaches are preferable

Background
Subpopulation analysis

2 of 13



•Multilevel modeling
• Incorporate random effects into the linear predictor (variation in G matrix)

• Fit the conditional mean

• Estimators target cluster-specific effects

• Weighted modeling (e.g., MPML) requires multiple sets of weights and scaling 
corrections

•Single-level modeling
• Specify a more complex R matrix / use empirical variance estimators

• Fit the marginal mean

• Estimators target population-averaged effects

• Weighted modeling (e.g., PML) requires one set of weights and no scaling

Background
Clustering
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•Subpopulation analysis literature limited to single-level modeling
• Multiple-group and zero-weight approaches provide equivalent results

• Subsetting the data only negatively impacts variance estimation

•Subpopulation analysis is more nuanced with multilevel modeling
• Scaling corrections may additionally lead to differences in point estimation

• Level 1 grouping variables may present complications
• Only the multiple-group approach can account for correlated group-specific cluster effects

• Subpopulation cluster sizes may be small (problematic for MPML)

• No simulation studies have compared subpopulation methods with MPML

Background
Combining Subpopulation and Clustering Considerations
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To investigate the interactive effect of subpopulation method and 
estimation method on the performance of fixed effect parameter 
and standard error estimators in the context of performing a 
subpopulation analysis.

Present Study
Purpose
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Method
Study Conditions
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Factor Level
Subpopulation Method Multiple-group

Zero-weight
Subset

Estimation Method MPML
PML

Design Informativeness Informative
Non-informative

Level of group assignment Level 1
Level 2

Proportion of cases in target group 𝜋1 = .10
𝜋1 = .15

…
𝜋1 = .90



1) Generate finite population data
𝑌𝑖𝑗,𝑔 = 𝛾00,𝑔 + 𝑒𝑖𝑗,𝑔 + 𝑢0𝑗,𝑔

𝛾00,𝑔 = −.4 + 𝑔𝑖𝑗 × .8 where 𝑔𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜋1

𝑒𝑖𝑗,𝑔~𝑁 0, 𝜎𝑔
2 ; 𝜎0

2 = 𝜎1
2 = .7

𝑢0𝑗,𝑔~𝑁 0, 𝜏00,𝑔 ; 𝜏00,0 = 𝜏00,1 = .3; Cor 𝑢0𝑗,0, 𝑢0𝑗,1 = .75 (L1 grouping) or 0 (L2 grouping)

• Generate 20,000 clusters across ten L1 strata

• Generate ≈1,300,000 individual units across two L2 strata

2) Generate sample data
• Select 200 PSUs using stratified systematic PPS sampling

• Select ≈7,000 SSUs using stratified SRS

3) Repeat first two steps 1,000 times/condition

Method
Data Generation
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Results

Informative Design (weights)

MMG0
MMGF
MZW
MSS

SMG

SZW
SSS

8 of 13



Results

Non-Informative Design (no weights)

MMG0
MMGF
MZW
MSS

SMG

SZW
SSS

9 of 13



Existing literature on subpopulation analysis cannot be blindly 
generalized to multilevel modeling

Discussion
Main Findings

PML MPML
Differences between subsetting approach and other approaches X X

Differences between multiple-group and zero-weight approaches X

Differences among approaches in variance estimation X X

Differences among approaches in point estimation X

Differences among approaches when first stage design is altered X X

Differences among approaches when first stage design is unaltered X

Sensitivity to cluster size X
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•Evaluate informativeness of design
• Informative design (need sampling weights)

• PML preferable to MPML when cluster sizes are small

• For PML, multiple-group = zero-weight > subset

• For MPML with L1 grouping, multiple-group > zero-weight > subset 

• For MPML with L2 grouping, zero-weight > multiple-group > subset

• Non-informative design (omit sampling weights)
• Single-level and multilevel methods both perform well

• Differences among subpopulation approaches are trivial

•Compare approaches to evaluate robustness of conclusions

Discussion
Recommendations*

*Recommendations may not extend to conditions outside those examined in the present study. 

In particular, comparisons are more complex with non-Gaussian data. 
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